1. 质因数概念口诀
示例:
1+2*(4-3)/5*[(7-6)/8*9]
=1+2*1/5*[1/8*9]
=1+2/5*[0.125*9]
=1+0.4*1.125
=1+0.45
=1.45
横式计算
示例:
1+2*(4-3)/5*[(7-6)/8*9]=1+2*1/5*[1/8*9]=1+2/5*[0.125*9]=1+0.4*1.125=1+0.45=1.45
四则混合运算法则
1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。字母表示:
a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。字母表示:
(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。字母表示:
a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。字母表示:
(a×b)×c=a×(b×c)
5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、连减定律:
①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:
a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三个数的加减法运算中,交换后两个数的位置,得数不变。字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
①一个数连续除以两个数, 等于这个数除以后两个数的积,得数不变。字母表示:
a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三个数的乘除法运算中,交换后两个数的位置,得数不变。字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
扩展资料
分数、小数四则混合运算的计算 ***
1、分数、小数加减混合运算,当分数能转化成有限小数时(分母只含有质因数2和5),一般把分数化成小数后计算比较简便,当有的分数不能化成有限小数时,就把小数化成分数计算。
2、分数、小数乘法混合运算,如果小数与分数的分母约分时,可直接运算或把小数化成分数后再计算比较方便;如果把分数化成小数后能进行简算,也可以把分数化成小数计算。
2. 质因数是什么意思举个例子
质因数按从小到大的顺序排列
例如30分解质因数是30=2×3×5,所以说30的质因数是2,3和5,这三个质因数就是按照从小到大的顺序排列的
在如42分解质因数是42=2×3×7,这三个质数有是按照从小到大的顺序排列的
这样的例子非常多,不在一一举例了
3. 100以内的质数顺口溜
一位质数偶打头,2、3、5、7要记熟; ( 2、3、5、7)
两位质数不用愁,可以编成顺口溜。
十位若是4和1,个位准有1、3、7; ( 41、43、47、11、13、17)
十位若是2、5、8,个位3、9往上加; ( 23、29、53、59、83、89)
十位若是3和6,个位1、7跟在后; (31、37、61、67)
十位若是被7占,个位准是1、9、3; (71、79、73)
19、97最后算。 (19、97)
4. 质因数的概念
质因数(素因数或质因子)在数论里是指能整除给定正整数的质数。除了1以外,两个没有其他共同质因子的正整数称为互质。
质因数就是一个数的约数,并且是质数,比如8=2×2×2,2就是8的质因数。12=2×2×3,2和3就是12的质因数。把一个式子以12=2×2×3的形式表示,叫做分解质因数。16=2×2×2×2,2就是16的质因数,把一个合数写成几个质数相乘的形式表示,这也是分解质因数。
拓展资料:分解质因数的方法是先用一个合数的最小质因数去除这个合数,得出的数若是一个质数,就写成这个合数相乘形式;若是一个合数就继续按原来的方法,直至最后是一个质数。
分解质因数的有两种表示方法,除了大家最常用知道的"短除分解法"之外,还有一种方法就是"塔形分解法"。
分解质因数对解决一些自然数和乘积的问题有很大的帮助,同时又为求最大公约数和最小公倍数做了重要的铺垫。
5. 质因数讲解
质数(prime number)又称素数,有无限个。一个大于1的自然数,除了1和它本身外,不能被其他自然数整除,换句话说就是该数除了1和它本身以外不再有其他的因数;否则称为合数。
质因数就是一个数的约数,并且是质数,比如8=2×2×2,2就是8的质因数。12=2×2×3,2和3就是12的质因数。把一个式子以12=2×2×3的形式表示,叫做分解质因数。16=2×2×2×2,2就是16的质因数,把一个合数写成几个质数相乘的形式表示,这也是分解质因数。
6. 质因数的定义小学数学
一个数的分解方法很多。1.例举法。如6:2,3两个质因数。2.短除法。3.写成乘法形式。如:12=丨x12=2x6=3x4=2x2x3,其中1.12.6.4这些是合数,不合题意,只有2.2.3这几个是质因数。
第四种可以写成除法的形式。如15。15÷3=5,15÷5=3,15÷15=丨,15÷1=15。3和5是15的质因数。